CLAM: Computational Linguistics Application
Mediator

Maarten van Gompel

23-03-2011

ILK Research Group \ RN

Induction of Linguistic Knowledge

Maarten van Gompel
CLAM: Computational Linguistics Application Mediator

* UNIVERSITY

Introduction
[]

Introduction

Introduction

There are a lot of specialised command-line NLP tools available.

@ Tools often available only locally, installation and
configuration can be time and resource consuming

@ Human aspect: Not very user-friendly for the untrained
general public

© Machine aspect: How to connect one tool to another? How
to communicate with a tool in a uniform fashion?

Maarten van Gompel

CLA omputational L cs Application Mediator

Introduction Technical Details D 2 Service Writing a Client

000
Solution

Solutions

Human aspect: Make NLP tools available as a web application.
Machine aspect: Make NLP tools available as a full-fledged
webservice.

© Services are available over the web.
@ User-friendly web application provided for human end-users

© Uniform interface for users (webapp) and machines
(webservice)

@ Great for demo purposes

© Multiple webservices can be chained in a workflow

Maarten van Gompel

C omputational L cs Application Mediator

Introduction
oe

Solution

Challenges

© NLP tasks time consuming: service may run for days before
yielding result

@ NLP tasks on large data collections
© Handling of metadata descriptions
© Webservices have to be fully deterministic/predictable

© Establishing general interfaces for both humans and machines

Maarten van Gompel
CLAM: Computational Linguistics Application Mediator

Introduction Technical Details Writing a Client

Our Focus

Our Focus

Q@ A simple and universal approach: wrapping
e Turn almost any NLP tool into a webservice with minimal
effort

e NLP tool = Given input files and a custom set of parameters,
produce output files
o No need to alter the tool itself, just describe its behaviour

e Simple, yet powerful enough to deal with complex setups
e Maximum flexibility

@ Machine-parsable interface & Human-friendly interface

Maarten van Gompel

C omputational L cs Application Mediator

Writing a Client

Introduction Technical Details Setup

Wrapping Approach

End-User Automated Chent
in webbrowser " CLAM Client AP
HTTP HTTR
H'rrpi l ::I;L fmxmﬁm +XSL G 2{;’:”“_
E‘CLAM Client API } Workflow Interface
CLAM Webservice

System wrapper script

NLP Application(s)

: CLAM Data AP

Service Configuration

Maarten van Gompel
CLAM: Computational Linguistics Application Mediator

Introduction
[]
Resource-oriented

Resource oriented

@ Project
e Input files
o Per-file parameter selection (=metadata)
o Global system-wide parameter selection
e Output files

Project example: User wants to PoS-tag a corpus and starts a
project for it

Input: The untagged corpus

Output: The tagged corpus

Maarten van Gompel

CLA omputational L cs Application Mediator

Technical Details

Technical Details

RESTful Webservice

RESTful Webservice (as opposed to SOAP, XML-RPC)

@ Resource-oriented: "Representations” of "resources” (projects)

@ Using HTTP verbs

© Lightweight

@ Returns human-readable, machine-parseable XML adhering to
a CLAM XML Scheme Definition

© User authentication in the form of HTTP Digest
Authentication

Maarten van Gompel
CLAM: Computational Linguistics Application Mediator

Technical Details At Service Writing a Client

Written entirely in Python 2.5
@ NLP tools, wrapper scripts, and clients may be in any
language
@ But: Readily available APl when writing wrapper scripts and
clients in Python.

© Built on web.py, runs standalone and out-of-the box with
built-in CherryPy webserver

Maarten van Gompel

CLAM: Computational Linguistics Application Mediator

Technical Details up 2 Service Writing a Client

Built-in User Interface

User interface automatically generated from XML using XSLT (in
browser)

© Webservice directly accessible from webserver

@ Web 2.0 interface: xHTML Strict, jquery (javascript), AJAX,
CSS

Accopting new Input files and selection of paramters

nput

Tempiate Format Actons
ot text document o

Maarten van Gompel

C omputational L cs Application Mediator

CLAM Setup

Projects are the main resources, users start a new project for each
experiment/batch.
Three states:

e Status 0) Parameter selection and file upload
e Status 1) System in progress

o Actual NLP tool invoked at this stage only
o Users may safely close browser, shut down computer, and
come back later in this stage

e Status 2) System done, view/download output files

Maarten van Gompel
CLAM: Computational Linguistics Application Mediator

Technical Details D Providing a Service Writing a Client

O @0C
Providing a Service

Providing a Service (1/2)
In order to make a webservice:
1) Write a service configuration file

@ General meta information about your system (name, description,
etc..)

@ Definition of global parameters accepted by your system (i.e.
the wrapper script around your NLP tool)

@ Definition of profiles

o A profile defines in detail what output a system produces given
a certain input.

Maarten van Gompel

C omputational L cs Application Mediator

Technical Details Setup Providing a Service Writing a Client

Providing a Service

Providing a Service (2/2)
In order to make a webservice:

2) Write a wrapper script for your system

@ Wrapper script is invoked by CLAM, and should in turn invoke
the actual system

@ Acts as glue between CLAM and your NLP Application.

@ Can be written in any language (python users may benefit
from the CLAM API)

@ Not always necessary, NLP applications can be invoked
directly by CLAM as well.

Maarten van Gompel

CLAM: Computational Linguistics Application Mediator

Technical Details Providing a Service Writing a Client
O 00e0000

Profiles

Profiles define...
@ ... what output files are produced given which input files

@ ... what metadata parameters are required or possible on
input files

@ ... how metadata fields are propagated from input files to
output files

@ ... what viewers are associated with output files (for
webapplication)

@ ... which converters can act upon input/output files (for
webapplication)

Maarten van Gompel

C omputational L cs Application Mediator

Providing a Service
[o] Te]e]

Profiles

Profiles define what output files are produced given which input
files

@ Input Templates
@ Output Templates
e An output template may be conditional on global parameters

Maarten van Gompel

CLA omputational L cs Application Mediator

Providing a Service

[e]e] o]
Profiles

Metaphor:

Maarten van Gompel

CLAM: Computational Linguistics Application Mediator

Technical Details Setup Providing a Service Writing a Client

[e]e]e/o]e] o)

Profile examples:

@ A machine translation system:

o Input Template: The input text in source language X which
is to be translated

o Output Template: The translated text in target language Y

@ A simple lexicon-based spelling correction system:

o Input Template: The input text which is to be corrected
o Input Template: A lexicon
o Output Template: The corrected text

Maarten van Gompel

CLAM: Computational Linguistics Application Mediator

Technical Details Setup Providing a Service Writing a Client

Writing a Wrapper Script

Writing a Wrapper Script

Typical layout of a wrapper script:
© Read command line arguments (argv) set by CLAM

o Typical arguments are: Input Directory, Output Directory,
Clam XML file

@ Parse Clam XML file (easy using CLAM Data API)

© Read user-set parameters and iterate over input files, do
whatever you need to do

© Invoke your NLP tool (system call)

Maarten van Gompel

CLAM: Computational Linguistics Application Mediator

Technical Details Setup 2 Service Writing a Client

Writing a Client to connect to an existing service

@ Communicate with service over HTTP, using HTTP verbs on
projects and files to effectuate state transfers

e GET / - List all projects

o GET /{projectl}/ - Get a project’s current state (CLAM
XML)

o PUT /{project}/ - Create a new empty project

e POST /{projectl}/ - Start a project with POSTed data as
parameters

o DELETE /{projectl}/ - Delete or abort a project

e POST /{project}/input/{filename} - Upload input file

e GET /{project}/output/ - Download all output files as
archive

o GET /{project}/output/{filename} - Download output
file

@ Check HTTP return codes and parse XML responses

Maarten van Gompel

CLAM: Computational Linguistics Application Mediator

Writing a Client

Writing a Client to connect to an existing service

Python users benefit from CLAM Client API, taking care of all
communication and response parsing!

Maarten van Gompel

CLA omputational L cs Application Mediator

Maarten van Gompel

istics Application Mediator

	Introduction
	Introduction
	Solution
	Our Focus
	Wrapping Approach
	Resource-oriented

	Technical Details
	Setup
	Setup

	Providing a Service
	Providing a Service
	Profiles
	Writing a Wrapper Script

	Writing a Client
	End

